Flex
 Power Supply

One solution，many applications

AпヲGYォIE！

A new way to make and use Power Supplies

Yet another strong proposition by Adelsystem for power supplies and power continuity specialists．

Adelsystem aim is to provide designers and users with a complete range of solutions in power supplies and power continuity products， focusing on both standard and special applications．
Our target is to deliver problem－free solutions so that you can safely dedicate your attention to the rest of the automation project．

The FLEX technology is the result of these corner stones of our corporate identity．
Designed taking into account the pressure to optimal use of space， FLEX units are very compact in size．
The wide input voltage range allows to have just one article for many applications and minimize stock．

FLEX is based on semi－resonant switching circuit which allows efficiency up to 93% and a very dynamic and robust power supply to a wide range of loads such as PLC，sensors，motors，resistive／ inductive loads，etc．

The FLEX range conforms with the highest quality standards and guarantees a reliable and durable operation with a MTBF up to 500.000 hours and 3 year warrantee．

		5	5	$1=$		5			5	$1=$	$r=$			5	5		
		Vds		12 Vc			48 V						24 V				
	mput（Vott）	115－230 Vac	115 －230 Vac	$115-230 \mathrm{Vac}$	115 －230 Vac	115－230 Vac	115 －230 Vac	115－230 Vac	$115-230 \mathrm{Vac}$	115 －230 Vac	115 －230 Vac	$115-230 \mathrm{Vac}$	115 －230 Vac	230－400－500 Vac	230－400－500 Vac	230－400－500 Vac	400－500 Vac
	Output（Vdd－w）	5 Vdc 35 W	12Vdc 36－72W	$12 \mathrm{Vdc} 120-180 \mathrm{~W}$	$12 \mathrm{Vdc} 280-336 \mathrm{~W}$	$48 \mathrm{Vdc} 120-180 \mathrm{~W}$	$48 \mathrm{Vdc} 240-345 \mathrm{~W}$	$48 \mathrm{Vdc}-480-600 \mathrm{~W}$	24Vdc－40－70W	$24 \mathrm{Vdc} 95-120 \mathrm{~W}$	24 Vdc 120－180 W	$24 \mathrm{Vdc} 240-330 \mathrm{~W}$	$24 \mathrm{Vdc} 480-600 \mathrm{~W}$	$24 \mathrm{Vdc} 95-120 \mathrm{~W}$	24 Vdc 120－180 W	$24 \mathrm{Vdc} 240-330 \mathrm{~W}$	$24 \mathrm{Vdc} 480-600 \mathrm{~W}$
	Model	flex6005A	FLEx6012A	FLEX17012A	FLEX28012A	FLEX17048A	FLEX28048A	Flex50098A	flex6024A	flex9024A	FLEX17224A	FLEx28024A	FLEX50024A	Flex9024B	FLEX17024B	FLEX28024B	flex50024
											$2 \times \mathrm{Vac}$				$2 \times \mathrm{Vac}$		$3 \times \mathrm{Vac}$
${ }_{\text {M }}^{\text {Mrat }}$	Nominal InputVortage	$115-230 \mathrm{Vac}$	$5-230 \mathrm{Va}$	$5-230 \mathrm{Vac}$ Input ${ }^{\text {c }}$	$5-230 \mathrm{Vac}$ Input ${ }^{\text {F }}$	$5-230 \mathrm{Vac}$ Input	$115-230 \mathrm{Vac}$ Input＊	15－230 Vac Input＊	115－230 Vac	$115-230 \mathrm{Vac} *$	$15-233 \mathrm{Vac} *$	$115.230 \mathrm{Vac}^{*}$	$15-230 \mathrm{Vac}{ }^{*}$	$230-400-500 \mathrm{Vac}^{*}$	$230-400-500 \mathrm{Vac*}$	30－400－500 Vac＊	$400-500 \mathrm{Vac}$
	Inputvolage Range	－264	－264 Vac	$90-135 \mathrm{Vac}$ $180-264 \mathrm{Vac}$	90－135 Vac $180-264 \mathrm{Vac}$	90－264V	$90-135 \mathrm{Vac}$ $180-264 \mathrm{Vac}$	90－135 Vac 180－264 Va	$90-135 \mathrm{Vac}$ $180-264 \mathrm{Vac}$	$90-135 \mathrm{Vac}$ $180-264 \mathrm{Vac}$	$187-264 \mathrm{Vac}$ 330 550 Vac	$187-264 \mathrm{Vac}$ $330-550 \mathrm{Vac}$	$187-264 \mathrm{Vac}$ $330-550 \mathrm{Vac}$	$330-550 \mathrm{Vac}$			
	Inrus Current（V）and In Load）12t	$\leq 7 \mathrm{~A} \leq 5 \mathrm{msec}$ ．	$\leq 11 \mathrm{~A} \leq 5 \mathrm{msec}$	$\leq 16 \mathrm{~A} 55 \mathrm{msec}$	$\leq 16 \mathrm{~A} \leq 5 \mathrm{msec}$	$\leq 11 \mathrm{~A} 5 \mathrm{mmsec}$	$\leq 16 \mathrm{~A} \leq 5 \mathrm{msec}$	$\leq 16 \mathrm{~A} 5 \mathrm{mmsec}$	$\leq 7 \mathrm{~A} \leq 5 \mathrm{msec}$	$\leq 11 \mathrm{~A} \leq 5 \mathrm{msec}$	≤ 11 A 5 msee	$\leq 16 \mathrm{~A} 5 \mathrm{mmsec}$	≤ 16 A 55 msec	$\leq 17 \mathrm{~A} 5 \mathrm{mmsec}$	$\leq 17 \mathrm{~A} \leq 5 \mathrm{msec}$	$\leq 17 \mathrm{~A} 55 \mathrm{msec}$	$\leq 17 \mathrm{~A} \leqslant 5 \mathrm{msec}$
	Freuuency	$47.63 \mathrm{HZ} \pm 6 \%$	47－$-63 \mathrm{~Hz} \pm 6 \%$	$47.63 \mathrm{~Hz} \pm 6 \%$	47－ $63 \mathrm{~Hz} \pm 6 \%$	47－ $63 \mathrm{~Hz} \pm 6 \%$	47－ $63 \mathrm{~Hz} \pm 6 \%$	$47.63 \mathrm{HZ} \pm 6 \%$	47－63 Hz ＋6\％	47－ $63 \mathrm{~Hz} \pm 6 \%$	47－63 $\mathrm{Hz} \pm 6 \%$	47－ $63 \mathrm{~Hz} \pm 6 \%$	47－63 Hz ＋6\％	$47.63 \mathrm{~Hz} \pm 6 \%$	47－63 Hz ＋6\％	47－ $63 \mathrm{~Hz}+6 \%$	47－63 Hz $\pm 6 \%$
	Input Curent	$0.50-0.25 \mathrm{~A}$	1－0．7 A	2.8 －1．3A	3．3－2．2 A	2.8 －1．3A	3．3－2．2 A	8．5－4．2 A	1．0．0．7A	1.8 － 0.98	2．8．－1．3	3．3－2．2A	8．5－4．2 A	1．0－0．5－0．4A	1．5－－．8－－．7 A	2．2－1．4－1．0A	1，7A
	Inemal fise	4.0 A	4．0A	4.0 A	6．3A	4.0 A	6.3 A	10.0 A	4 A	4 A	4 A	6.3 A	10 A	4 A	4 A	4 A	6．3A
	Exeeral fise（recommended）	6 A （MCB curve B）	6.0 A	10.0 A	16.0 A	10.0 A	16.0 A	16.0 A	6 A	10A	10A	16 A	16 A	10 A	10A	16 A	16 A
	Output Olatage Factor Seting $\pm 3 \%$	5 Vdc	12 Vdc	12 Vdc	dc	dc	Vdo	Vdc	24 Vdc	Vdc							
	Adiustment range（vadi）	$4.75-5.25 \mathrm{Vdc}$	10－15．5Vdc	10－14 Vdc	10－14 Vdc	41.55 Vdc	$41-55 \mathrm{Vdc}$	41.55 Vdc	$22-27 \mathrm{Vdc}$	22－27 Vdc	22－27 Vdc	$22-27 \mathrm{Vdc}$	$22-27 \mathrm{Vdc}$				
	Start up wit capasative load	＜ 50.000 mF	＜ 50.000 uF	＜50．00 $\mu \mathrm{F}$	$\leq 50.000 \mathrm{uF}$	＜50．00 uF	$\leq 50.000 \mathrm{H}$	S 50.00 uF	$\leq 50.000 \mathrm{p}$	≤ 50.00 uF	$\leq 50.000 \mathrm{H}$	\＄50．00 uF	＜50．00 uF	S 50.000 HF	$\leq 50.000 \mathrm{H}$	＜50．00 $\mu \mathrm{F}$	≤ 50.00 uF
	Turn－On delay aterer applying mans volage	1 sec．（max）	1.5 sec．（max）	1 sec．（max）													
	Continuous Curentat $24^{4 V} \times 40^{\circ} \mathrm{C}(\mathrm{ln})$	5．0A	4A（115）6A（230）	14 A	16 A	3.75 A	7.0 A	12.0 A	$2.0 \mathrm{~A}(115) 3.0 \mathrm{~A}(230)$	5．0A	7．5A	14 A	25 A	5．0A	7.5 A	14 A	25 A
	Continuous Curentat 24 V ＜ $50^{\circ} \mathrm{C}$（（n）	5.0 A	3A（115）5A（230）	12A	15 A	3．0A	6.0 A	11.0 A	1.54 （115）2．5A（230）	4．5A	6．0A	12A	22 A	4．5A	6.0 A	12 A	22 A
	Continuous Curentat $24 V \times 50^{\circ} \mathrm{C}(\mathrm{In})$	5.0 A	2A（115）3A（230）	10 A	14A	2.5 A	5．0A	10．0 A		4.08	5.0 A	10A	20A	4.0 A	5.0 A	10A	20 A
	Powere Boost Curent（tat2 24dcic $60^{\circ} \mathrm{C}$ 2 3min．）	5．0A	4A（115）6A（230）	14 A	16 A	3．75 A	7．0A	12.0 A	3．5A	5.0 A	7．5A	14 A	25 A	5．0A	7．5A	4 A	A
	Short tirauit urrent（lco）								7．0A	${ }^{12} \mathrm{~A}$	16 A	30 A	60 A	12 A	16A	30 A	60 A
	Hold－upTime（ min．Vacel 2 2vdic	Typ． 20 msec	Typ． 20 msec	Typ． 20 msec	Ty． 20 msec	Typ． 20 msec	Ty． 20 msec	Typ． 20 meec	Typ． 20 msee	Typ． 20 msec							
	Resisial Ripple	$\leq 80 \mathrm{mV}$ wo	$\leq 80 \mathrm{mv}$ po	$\leq 80 \mathrm{mV}$ vo	$\leq 80 \mathrm{mV}$	$\leq 80 \mathrm{mV}$ vo	$\leq 80 \mathrm{mV}$ mo	$\leq 80 \mathrm{mV}$	$\leq 80 \mathrm{mV}$	$\leq 80 \mathrm{mv}$ vo	$\leq 80 \mathrm{mv}$	$\leq 80 \mathrm{mv}$ vo	$\leq 80 \mathrm{mv}$ po	$\leq 80 \mathrm{mvo}$	$\leq 80 \mathrm{mv}$ po	$\leq 80 \mathrm{mV}$ po	$\leq 80 \mathrm{mV}$
	Efficiency（50\％of 1 ）	\＄82\％	\＄88\％	＜91\％	\＄92\％	＜91\％	S91\％	S 92%	288\％	291\％	291\％	291\％	292\％	291\％	291\％	291\％	29\％\％
	Over temperature Protecion								Shut－down	output and automatic	estart						
	Shor－ticicuit rotection	Continu	Sus Mode		$1^{\circ} \mathrm{Hiccup}$ Mode	： 2^{2} Continuous Mode	； 3° Marual Reset		Continuous Mode			$1{ }^{\circ} \mathrm{Hicc}$	up Mode： 2^{2} Continuous	us Mode； 3° Restart Aft	ter Main		
	Dissination power load max（ W ）	6	6	17	28	17	28	54	6	11	17	${ }^{28}$	54	11	17	${ }^{28}$	54
	Over Load protection	\bigcirc	\bigcirc	\bigcirc	©	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－	\bigcirc	－	0
	Overevolage ouput protection（nemal future）	Yes（typ． 15 Vdc ）	Yes（typ． 35 Vda ）	Yes（typ． 35 V Vdc ）	Yes（typ． 35 V Vc）	Yas（typ． 72 Vdc ）	Yes（typ． 72 V dc）	Yes（typ． 72 V Vd）	Yes（typ． 35 V de）	Yes（typ． 35 Vdc ）	Yes（typ． 35 Vdc ）	Yes（typ． 35 V Vdc ）	Yes（typ． 35 V Vdc ）	Yes（yy． 35 V Vdc ）	Yes（typ． 35 F Vdc ）	Yes（typ． 3 EVdo ）	Yes（ty． 35 Vdc ）
	Parallel commection	\bigcirc	\bigcirc	\bigcirc	Easy parallee	\bigcirc	Easy parallel	Easy parallel	－	－	－	Easy parallel	Easy paralaı	－	－	Easy parallel	Easy paralel
	Relay power good	Q	－	0	C	\bigcirc	\bigcirc	－	Q	0	\bigcirc	－	－	0	\bigcirc	0	0
cumaric	Ambient Temperature opeation	$-25-70^{\circ} \mathrm{C}$	$-25-770^{\circ} \mathrm{C}$	$-25-70^{\circ} \mathrm{C}$	$-25-770^{\circ} \mathrm{C}$	$-25-70^{\circ} \mathrm{C}$	$-25-70^{\circ} \mathrm{C}$	$-25-70^{\circ} \mathrm{C}$	$-25-+70^{\circ} \mathrm{C}$	$-25-70^{\circ} \mathrm{C}$	$-25 \cdot+70^{\circ} \mathrm{C}$	$-25-70^{\circ} \mathrm{C}$	$-25-70^{\circ} \mathrm{C}$	-25 － $770^{\circ} \mathrm{C}$	$-25-770^{\circ} \mathrm{C}$	$-25-70^{\circ} \mathrm{C}$	$-25-770^{\circ} \mathrm{C}$
	Derating ${ }^{\text {P }}$（ (m)	760 ${ }^{\circ} 2.5 \%^{\circ} \mathrm{C}$	＞600 $2.5 \%^{\circ} \mathrm{C}$	＞600 2.5% \％${ }^{\circ}$	＞600 2.5% \％${ }^{\text {C }}$	＞60 ${ }^{\circ} .5 \%{ }^{\circ} \mathrm{C}$	$>60^{\circ} 2.5 \%$ OC	260 ${ }^{\circ} .5 \%^{\circ} \mathrm{C}$	$>50^{\circ} 2.5 \%{ }^{\circ} \mathrm{C}$	$>60^{\circ} 2.5 \%^{\circ} \mathrm{C}$	$>600^{\circ} 2.5 \%{ }^{\circ} \mathrm{C}$	$>60^{\circ} 2.5 \%{ }^{\circ} \mathrm{C}$	$>60^{\circ} 2.5 \%{ }^{\circ} \mathrm{C}$	＞60 ${ }^{\circ} 2.5 \%^{\circ} \mathrm{C}$	$>600^{\circ} 2.5 \%$ O C	$>60^{\circ} 2.5 \%{ }^{\circ} \mathrm{C}$	$>60{ }^{\circ} 2.5 \%{ }^{\circ} \mathrm{C}$
	Ambientemperature Storage	－40－885 ${ }^{\circ} \mathrm{C}$	$-40-85^{\circ} \mathrm{C}$	$-40-85^{\circ} \mathrm{C}$	$-40-85{ }^{\circ} \mathrm{C}$	$-40-85^{\circ} \mathrm{C}$	$-40-85{ }^{\circ} \mathrm{C}$	$-40-88{ }^{\circ} \mathrm{C}$	$-40-85^{\circ} \mathrm{C}$	－40－485 ${ }^{\circ}$	$-40-85^{\circ} \mathrm{C}$	－40－485	$-40-85^{\circ} \mathrm{C}$	－40－ $885^{\circ} \mathrm{C}$	$-40-+85^{\circ} \mathrm{C}$	$-40-85^{\circ} \mathrm{C}$	$-40-85^{\circ} \mathrm{C}$
	Humidity at $25^{\circ} \mathrm{C}$	95% to $25{ }^{\circ} \mathrm{C}$	95% to $25^{\circ} \mathrm{C}$	95% to $25^{\circ} \mathrm{C}$	95\％to $25^{\circ} \mathrm{C}$	95\％to $25^{\circ} \mathrm{C}$	95\％\％to $5^{50} \mathrm{C}$	95\％to 250 ${ }^{\circ}$	95\％to 250	95\％to $25^{\circ} \mathrm{C}$	95^{5} to $05^{5} \mathrm{C}$	95% to $25^{\circ} \mathrm{C}$	95\％to 5^{50}				
	Isolition Voltage（IN／OUT）	3000Vac	3000 Vac	$3^{3000 V a c}$	3000 Vac												
	Isolation Votageg（I／$/ \mathrm{PE}$ ）	1605 Vac															
	Isolatio Voltagelout／PE）	500 Vac															
	Reliaility MTEF ECE 61709）	＞ 500000 h	$>500000 \mathrm{~h}$	＞ 500000 h	＞ 500000 h	$>500000 \mathrm{~h}$	＞ 500000 h	$>500000 \mathrm{~h}$	＞ 500000 h	＞ 500000 h	＞ 500000 h	$>500000 \mathrm{~h}$	＞ 500000 h				
	Polution Degree Enviromment	2	2	2	2	2	2	2 －	2 －	2	2	2	2	2	2	2	2
	Comectionterminal Block ScrewTTpe	2.5 mm	4 mm	2.5 mm	2.5 mm	2.5 mm	2.5 mm	4 mm	2.5 mm	2.5 mm	2.5 mm	4 mm					
	Dimension（w－h．d） mm	50x120x50	50x120x50	$555 \times 10 \times 105$	$72 \times 115 \times 135$	$555 \times 10 \times 105$	$72 \times 115 \times 135$	85x120x140	50x120×50	$55 \times 110 \times 105$	$55 \times 110 \times 105$	$72 \times 15 \times 135$	855120x140	55x110x105	$55 \times 110 \times 105$	$72 \times 115 \times 135$	85x120x140
	Weight	0.30 kg approx	0.30 kg approx	0.6 kg approx	0.77 kg approx	0.60 kg approx	0.77 kg approx	1.1 kg approx	${ }^{0.30 \mathrm{~kg} \text { approx }}$	0.50 kg approx	0.60 kg approx	0.72 kg approx	1．1．kg approx	0.50 kg approx	0.60 kg approx	0.72 kg approx	1.0 kg approx
	Safery Sandard Approval	CE	CE，UL Listed														

Product range

DC UPS ＂All In One＂
DC Power Back Up units．Multi－function devices：power supply， battery charger and back－ up module in the same casing together with Adel Battery Care software

Flex
DIN rail Switching Power Supplies． Very compact in size， 150% power boost，wide input voltage range 110 － 230－400－500 Vac． Selectable output protection mode

D－Flex
High efficiency Power Supplies in DIN type modules．
For all kinds of small power．Requirements in installation，building automation and Industrial applications．

CB
New generation of Battery Chargers with 4 charging levels， equipped with Adel Battery Care software． One product for all batteries types．

Power supply

 low input voltageSwitching power suppy for direct connection to secondary transformer In 24 Vac Out 12－24－48 Vdc Watt：25－460

Dc／Dc converter
Dc／Dc Converter，step Up and Step down． Input－Output isolated， low voltage．With or without DIN Rail．

Interfaces
Wide range of passive interfaces units for Input and Output con－ nections，for PLC and CNC machine．

SFP

Safety Power．Power continuity solutions for alarm systems and fire alarms．Available as a fully enclosed device conforming with EN54．4 or as a component to be integrated in other instrumentation．

Auxiliary Module
Decoupling Modules
for redundancy
applications．
Electronic Fuses for Over Load output con－ trol，up to 4 cannel

Innovation and Functionality

Persist the technical proposal of ADEL system dedicated to the innovative products for the electrical continuity in DIN rail applications．The research objective of the design team，aimed to offer products which are able to solving in an innovative and functional way every application．The wide range of power supplies ADEL system SW，PFAL，PSM， PST，is added to the last generation of products that changes the way of Power Supply，FLEX！．Since 1991 ADELsystem designs and produces products in Italy，since the second half of 2008 in a new building located in Reggio Emilia，it is consolidated in logistics and production process the aim of achieving greater efficiency and innovative technology．

